Excited state localisation cascades in inorganic semiconductor nanoparticles.
نویسنده
چکیده
Excited state relaxation in zinc sulfide (ZnS) nanoparticles is studied as a model for the fate of the excited state in inorganic nanoparticles in general. A series of time-dependent density functional theory optimisations on the S1 and T1 excited states predict the existence of not merely isolated minima, as found before, but rather a connected cascade of excited state minima ending up in a conical intersection between the excited state energy surface and the ground state. The localisation of the excited state in the different minima increases down the cascade, while the barriers separating these minima, studied here for the first time for nanoparticles, are predicted to be in some cases electronic (strongly avoided crossing) in origin. The cartoon picture of excited state relaxation in inorganic nanoparticles that involves relaxation to the bottom of only one approximately harmonic well followed by photoluminescence appears for the ZnS nanoparticles studied here to be at best rather simplistic. The localisation cascade is finally found to strongly affect the excited state properties of nanoparticles and predicted to lead to the formation of defected nanoparticles after de-excitation in selected cases.
منابع مشابه
Rare Earth Doped Nanoparticles in Organic and Inorganic Host Materials for Application in Integrated Optics
The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic host material has been synthesized such that it is photo-crosslinkable to facilitate straightforward...
متن کاملPhotoluminescence in semiconductor nanoparticles; an atomistic view of excited state relaxation in ZnS
متن کامل
Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure
In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...
متن کاملSynthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices
CuMn2O4 nanoparticles, a semiconducting materials with tunable functionalities in solid oxide fuel cell, was successfully synthesized via a sol-gel method using its respective metal cations sources i.e. Cu2+ and Mn2+ in an appropriate complexing agent.The vibrational frequencies below 1000 cm-1 of the obtained materials confirmed the formation of metal-oxygen (M-O:Cu-O, Mn-O) bond in the sample...
متن کاملSynthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices
CuMn2O4 nanoparticles, a semiconducting materials with tunable functionalities in solid oxide fuel cell, was successfully synthesized via a sol-gel method using its respective metal cations sources i.e. Cu2+ and Mn2+ in an appropriate complexing agent.The vibrational frequencies below 1000 cm-1 of the obtained materials confirmed the formation of metal-oxygen (M-O:Cu-O, Mn-O) bond in the sample...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 26 شماره
صفحات -
تاریخ انتشار 2013